Construct a Categorical Column with In-Memory Vocabulary
Use this when your inputs are in string or integer format, and you have an
in-memory vocabulary mapping each value to an integer ID. By default,
out-of-vocabulary values are ignored. Use default_value
to specify how to
include out-of-vocabulary values. For the input dictionary features
,
features$key
is either tensor or sparse tensor object. If it's tensor object,
missing values can be represented by -1
for int and ''
for string.
column_categorical_with_vocabulary_list(..., vocabulary_list, dtype = NULL,
default_value = -1L, num_oov_buckets = 0L)
Arguments
... | Expression(s) identifying input feature(s). Used as the column name and the dictionary key for feature parsing configs, feature tensors, and feature columns. |
vocabulary_list | An ordered iterable defining the vocabulary. Each
feature is mapped to the index of its value (if present) in
|
dtype | The type of features. Only string and integer types are
supported. If |
default_value | The value to use for values not in |
num_oov_buckets | Non-negative integer, the number of out-of-vocabulary
buckets. All out-of-vocabulary inputs will be assigned IDs in the range
|
Value
A categorical column with in-memory vocabulary.
Details
Note that these values are independent of the default_value
argument.
Raises
ValueError: if
vocabulary_list
is empty, or contains duplicate keys.ValueError: if
dtype
is not integer or string.
See also
Other feature column constructors: column_bucketized
,
column_categorical_weighted
,
column_categorical_with_hash_bucket
,
column_categorical_with_identity
,
column_categorical_with_vocabulary_file
,
column_crossed
,
column_embedding
,
column_numeric
, input_layer