Layer/Model configuration
A layer config is an object returned from get_config()
that contains the
configuration of a layer or model. The same layer or model can be
reinstantiated later (without its trained weights) from this configuration
using from_config()
. The config does not include connectivity information,
nor the class name (those are handled externally).
get_config(object)
from_config(config)
Arguments
object | Layer or model object |
config | Object with layer or model configuration |
Value
get_config()
returns an object with the configuration,
from_config()
returns a re-instantation of hte object.
Note
Objects returned from get_config()
are not serializable. Therefore,
if you want to save and restore a model across sessions, you can use the
model_to_json()
or model_to_yaml()
functions (for model configuration
only, not weights) or the save_model_hdf5()
function to save the model
configuration and weights to a file.
See also
Other model functions: compile
,
evaluate.keras.engine.training.Model
,
evaluate_generator
,
fit_generator
, fit
,
get_layer
,
keras_model_sequential
,
keras_model
, multi_gpu_model
,
pop_layer
,
predict.keras.engine.training.Model
,
predict_generator
,
predict_on_batch
,
predict_proba
,
summary.keras.engine.training.Model
,
train_on_batch
Other layer methods: count_params
,
get_input_at
, get_weights
,
reset_states