Generates predictions for the input samples from a data generator.
The generator should return the same kind of data as accepted by
predict_on_batch().
predict_generator(object, generator, steps, max_queue_size = 10,
  workers = 1, verbose = 0)Arguments
| object | Keras model object  | 
    
| generator | Generator yielding batches of input samples.  | 
    
| steps | Total number of steps (batches of samples) to yield from
  | 
    
| max_queue_size | Maximum size for the generator queue. If unspecified,
  | 
    
| workers | Maximum number of threads to use for parallel processing. Note that
parallel processing will only be performed for native Keras generators (e.g.
  | 
    
| verbose | verbosity mode, 0 or 1.  | 
    
Value
Numpy array(s) of predictions.
Raises
ValueError: In case the generator yields data in an invalid format.
See also
Other model functions: compile,
  evaluate.keras.engine.training.Model,
  evaluate_generator,
  fit_generator, fit,
  get_config, get_layer,
  keras_model_sequential,
  keras_model, multi_gpu_model,
  pop_layer,
  predict.keras.engine.training.Model,
  predict_on_batch,
  predict_proba,
  summary.keras.engine.training.Model,
  train_on_batch