Generates predictions for the input samples from a data generator.
The generator should return the same kind of data as accepted by
predict_on_batch()
.
predict_generator(object, generator, steps, max_queue_size = 10,
workers = 1, verbose = 0)
Arguments
object | Keras model object |
generator | Generator yielding batches of input samples. |
steps | Total number of steps (batches of samples) to yield from
|
max_queue_size | Maximum size for the generator queue. If unspecified,
|
workers | Maximum number of threads to use for parallel processing. Note that
parallel processing will only be performed for native Keras generators (e.g.
|
verbose | verbosity mode, 0 or 1. |
Value
Numpy array(s) of predictions.
Raises
ValueError: In case the generator yields data in an invalid format.
See also
Other model functions: compile
,
evaluate.keras.engine.training.Model
,
evaluate_generator
,
fit_generator
, fit
,
get_config
, get_layer
,
keras_model_sequential
,
keras_model
, multi_gpu_model
,
pop_layer
,
predict.keras.engine.training.Model
,
predict_on_batch
,
predict_proba
,
summary.keras.engine.training.Model
,
train_on_batch