Model performance metrics
Model performance metrics
metric_binary_accuracy(y_true, y_pred)
metric_binary_crossentropy(y_true, y_pred)
metric_categorical_accuracy(y_true, y_pred)
metric_categorical_crossentropy(y_true, y_pred)
metric_cosine_proximity(y_true, y_pred)
metric_hinge(y_true, y_pred)
metric_kullback_leibler_divergence(y_true, y_pred)
metric_mean_absolute_error(y_true, y_pred)
metric_mean_absolute_percentage_error(y_true, y_pred)
metric_mean_squared_error(y_true, y_pred)
metric_mean_squared_logarithmic_error(y_true, y_pred)
metric_poisson(y_true, y_pred)
metric_sparse_categorical_crossentropy(y_true, y_pred)
metric_squared_hinge(y_true, y_pred)
metric_top_k_categorical_accuracy(y_true, y_pred, k = 5)
metric_sparse_top_k_categorical_accuracy(y_true, y_pred, k = 5)
Arguments
y_true | True labels (tensor) |
y_pred | Predictions (tensor of the same shape as y_true). |
k | An integer, number of top elements to consider. |
Note
Metric functions are to be supplied in the metrics
parameter of the
compile()
function.
Custom Metrics
You can provide an arbitrary R function as a custom metric. Note that
the y_true
and y_pred
parameters are tensors, so computations on
them should use backend tensor functions. See below for an example.
Note that a name ('mean_pred') is provided for the custom metric function. This name is used within training progress output.
If you want to save and load a model with custom metrics, you should
also specify the metric in the call the load_model_hdf5()
. For example:
load_model_hdf5("my_model.h5", c('mean_pred' = metric_mean_pred))
.
Alternatively, you can wrap all of your code in a call to
with_custom_object_scope()
which will allow you to refer to the
metric by name just like you do with built in keras metrics.
Documentation on the available backend tensor functions can be found at https://keras.rstudio.com/articles/backend.html#backend-functions.
Metrics with Parameters
To use metrics with parameters (e.g. metric_top_k_categorical_accurary()
)
you should create a custom metric that wraps the call with the parameter.
See below for an example.
Examples
# NOT RUN {
# create metric using backend tensor functions
metric_mean_pred <- function(y_true, y_pred) {
k_mean(y_pred)
}
model %>% compile(
optimizer = optimizer_rmsprop(),
loss = loss_binary_crossentropy,
metrics = c('accuracy',
'mean_pred' = metric_mean_pred)
)
# create custom metric to wrap metric with parameter
metric_top_3_categorical_accuracy <- function(y_true, y_pred) {
metric_top_k_categorical_accuracy(y_true, y_pred, k = 3)
}
model %>% compile(
loss = 'categorical_crossentropy',
optimizer = optimizer_rmsprop(),
metrics = c(top_3_categorical_accuracy = metric_top_3_categorical_accuracy)
)
# }