Zero-padding layer for 3D data (spatial or spatio-temporal).
Zero-padding layer for 3D data (spatial or spatio-temporal).
layer_zero_padding_3d(object, padding = c(1L, 1L, 1L), data_format = NULL,
batch_size = NULL, name = NULL, trainable = NULL, weights = NULL)
Arguments
object | Model or layer object |
padding | int, or list of 3 ints, or list of 3 lists of 2 ints.
|
data_format | A string, one of |
batch_size | Fixed batch size for layer |
name | An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided. |
trainable | Whether the layer weights will be updated during training. |
weights | Initial weights for layer. |
Input shape
5D tensor with shape:
If
data_format
is"channels_last"
:(batch, first_axis_to_pad, second_axis_to_pad, third_axis_to_pad, depth)
If
data_format
is"channels_first"
:(batch, depth, first_axis_to_pad, second_axis_to_pad, third_axis_to_pad)
Output shape
5D tensor with shape:
If
data_format
is"channels_last"
:(batch, first_padded_axis, second_padded_axis, third_axis_to_pad, depth)
If
data_format
is"channels_first"
:(batch, depth, first_padded_axis, second_padded_axis, third_axis_to_pad)
See also
Other convolutional layers: layer_conv_1d
,
layer_conv_2d_transpose
,
layer_conv_2d
,
layer_conv_3d_transpose
,
layer_conv_3d
,
layer_conv_lstm_2d
,
layer_cropping_1d
,
layer_cropping_2d
,
layer_cropping_3d
,
layer_depthwise_conv_2d
,
layer_separable_conv_1d
,
layer_separable_conv_2d
,
layer_upsampling_1d
,
layer_upsampling_2d
,
layer_upsampling_3d
,
layer_zero_padding_1d
,
layer_zero_padding_2d