Save the model after every epoch.
filepath
can contain named formatting options, which will be filled the
value of epoch
and keys in logs
(passed in on_epoch_end
). For example:
if filepath
is weights.{epoch:02d}-{val_loss:.2f}.hdf5
, then the model
checkpoints will be saved with the epoch number and the validation loss in
the filename.
callback_model_checkpoint(filepath, monitor = "val_loss", verbose = 0,
save_best_only = FALSE, save_weights_only = FALSE, mode = c("auto",
"min", "max"), period = 1)
Arguments
filepath | string, path to save the model file. |
monitor | quantity to monitor. |
verbose | verbosity mode, 0 or 1. |
save_best_only | if |
save_weights_only | if |
mode | one of "auto", "min", "max". If |
period | Interval (number of epochs) between checkpoints. |
For example
if filepath
is
weights.{epoch:02d}-{val_loss:.2f}.hdf5
,: then the model checkpoints will
be saved with the epoch number and the validation loss in the filename.
See also
Other callbacks: callback_csv_logger
,
callback_early_stopping
,
callback_lambda
,
callback_learning_rate_scheduler
,
callback_progbar_logger
,
callback_reduce_lr_on_plateau
,
callback_remote_monitor
,
callback_tensorboard
,
callback_terminate_on_naan