ResNet50 model for Keras.
ResNet50 model for Keras.
application_resnet50(include_top = TRUE, weights = "imagenet",
input_tensor = NULL, input_shape = NULL, pooling = NULL,
classes = 1000)
Arguments
include_top | whether to include the fully-connected layer at the top of the network. |
weights |
|
input_tensor | optional Keras tensor to use as image input for the model. |
input_shape | optional shape list, only to be specified if |
pooling | Optional pooling mode for feature extraction when
|
classes | optional number of classes to classify images into, only to be
specified if |
Value
A Keras model instance.
Details
Optionally loads weights pre-trained on ImageNet.
The imagenet_preprocess_input()
function should be used for image
preprocessing.
Reference
- Deep Residual Learning for ImageRecognition
Examples
# NOT RUN {
library(keras)
# instantiate the model
model <- application_resnet50(weights = 'imagenet')
# load the image
img_path <- "elephant.jpg"
img <- image_load(img_path, target_size = c(224,224))
x <- image_to_array(img)
# ensure we have a 4d tensor with single element in the batch dimension,
# the preprocess the input for prediction using resnet50
x <- array_reshape(x, c(1, dim(x)))
x <- imagenet_preprocess_input(x)
# make predictions then decode and print them
preds <- model %>% predict(x)
imagenet_decode_predictions(preds, top = 3)[[1]]
# }