MobileNet model architecture.
MobileNet model architecture.
application_mobilenet(input_shape = NULL, alpha = 1, depth_multiplier = 1,
  dropout = 0.001, include_top = TRUE, weights = "imagenet",
  input_tensor = NULL, pooling = NULL, classes = 1000)
mobilenet_preprocess_input(x)
mobilenet_decode_predictions(preds, top = 5)
mobilenet_load_model_hdf5(filepath)Arguments
| input_shape | optional shape list, only to be specified if  | 
| alpha | controls the width of the network. 
 | 
| depth_multiplier | depth multiplier for depthwise convolution (also called the resolution multiplier) | 
| dropout | dropout rate | 
| include_top | whether to include the fully-connected layer at the top of the network. | 
| weights | 
 | 
| input_tensor | optional Keras tensor (i.e. output of  | 
| pooling | Optional pooling mode for feature extraction when
 | 
| classes | optional number of classes to classify images into, only to be
specified if  | 
| x | input tensor, 4D | 
| preds | Tensor encoding a batch of predictions. | 
| top | integer, how many top-guesses to return. | 
| filepath | File path | 
Value
application_mobilenet() and mobilenet_load_model_hdf5() return a
Keras model instance. mobilenet_preprocess_input() returns image input
suitable for feeding into a mobilenet model. mobilenet_decode_predictions()
returns a list of data frames with variables class_name, class_description,
and score (one data frame per sample in batch input).
Details
The mobilenet_preprocess_input() function should be used for image
preprocessing. To load a saved instance of a MobileNet model use
the mobilenet_load_model_hdf5() function. To prepare image input
for MobileNet use mobilenet_preprocess_input(). To decode
predictions use mobilenet_decode_predictions().
