reuters_mlp
Train and evaluate a simple MLP on the Reuters newswire topic classification task.
library(keras)
max_words <- 1000
batch_size <- 32
epochs <- 5
cat('Loading data...\n')
reuters <- dataset_reuters(num_words = max_words, test_split = 0.2)
x_train <- reuters$train$x
y_train <- reuters$train$y
x_test <- reuters$test$x
y_test <- reuters$test$y
cat(length(x_train), 'train sequences\n')
cat(length(x_test), 'test sequences\n')
num_classes <- max(y_train) + 1
cat(num_classes, '\n')
cat('Vectorizing sequence data...\n')
tokenizer <- text_tokenizer(num_words = max_words)
x_train <- sequences_to_matrix(tokenizer, x_train, mode = 'binary')
x_test <- sequences_to_matrix(tokenizer, x_test, mode = 'binary')
cat('x_train shape:', dim(x_train), '\n')
cat('x_test shape:', dim(x_test), '\n')
cat('Convert class vector to binary class matrix',
'(for use with categorical_crossentropy)\n')
y_train <- to_categorical(y_train, num_classes)
y_test <- to_categorical(y_test, num_classes)
cat('y_train shape:', dim(y_train), '\n')
cat('y_test shape:', dim(y_test), '\n')
cat('Building model...\n')
model <- keras_model_sequential()
model %>%
layer_dense(units = 512, input_shape = c(max_words)) %>%
layer_activation(activation = 'relu') %>%
layer_dropout(rate = 0.5) %>%
layer_dense(units = num_classes) %>%
layer_activation(activation = 'softmax')
model %>% compile(
loss = 'categorical_crossentropy',
optimizer = 'adam',
metrics = c('accuracy')
)
history <- model %>% fit(
x_train, y_train,
batch_size = batch_size,
epochs = epochs,
verbose = 1,
validation_split = 0.1
)
score <- model %>% evaluate(
x_test, y_test,
batch_size = batch_size,
verbose = 1
)
cat('Test score:', score[[1]], '\n')
cat('Test accuracy', score[[2]], '\n')